Specialist Mathematics

Exam Planner

Your guide for exam goal-setting, preparation and success.

CONNECT
EDUCATION
An Elevate Education ${ }^{\vee}$ Brand

) Subject: Specialist Mathematics

EXAM DATE \qquad
GOAL

Topic: Logic and Proof	Do I have it in my notes?	Note-making deadline	Memorising deadline
Conjecture - making a statement to be proved or disproved			
Implications, equivalences and if and only if statements (necessary and sufficient conditions)			
Natural deduction and proof techniques: direct proofs using a sequence of direct implications, proof by cases, proof by contradiction, and proof by contrapositive			
Quantifiers 'for all' and 'there exists', examples and counter-examples			
Proof by mathematical induction.			
Topic: Functions, Relations and Graphs	Do I have it in my notes?	Note-making deadline	Memorising deadline
Rational functions and the expression of rational functions of low degree as sums of partial fractions			
Graphs of rational functions of low degree, their asymptotic behaviour, and the nature and location of stationary points and points of inflection			
Graphs of simple quotient functions, their asymptotic behaviour, and the nature and location of stationary points and points of inflection.			
Topic: Complex Numbers	Do I have it in my notes?	Note-making deadline	Memorising deadline
De Moivre's theorem, proof for integral powers, powers and roots of complex numbers in polar form, and their geometric representation and interpretation			
The nth roots of unity and other complex numbers and their location in the complex plane			
Factors over C, of polynomials; and introduction to the fundamental theorem of algebra, including its application to factorisation of polynomial functions of a single variable over C , for example, $z 8+1, z^{2}-i$ or $z^{3}-(2-i) z^{2}+z-2+i$			
Solution over C of polynomial equations by completing the square, use of the quadratic factorisation and the conjugate root theorem.			

The relationship between the graph of a function and the graphs of its anti-derivative functions
Derivatives of inverse circular functions

Second derivatives, use of notations $f^{\prime \prime}(x)$ and $\frac{d^{2} y}{d x^{2}}$, and their application to the analysis of graphs of functions, including points of inflection and concavity

Applications of chain rule to related rates of change and implicit differentiation; for example, implicit differentiation of the relations $x^{2}+y^{2}=9,3 x y^{2}=x+y$ and $x \sin (y)+x^{2} \cos (y)=1$

Techniques of anti-differentiation and for the evaluation of definite integrals:

- anti-differentiation of $1 / x$ to obtain $\log _{e}|x|$
- anti-differentiation of $\frac{1}{\sqrt{a^{2}-x^{2}}}$ and $\frac{a}{a^{2}+x^{2}}$ for $a>0$ by recognition that they are derivatives of corresponding inverse circular functions
- use of the substitution $u=g(x)$ to anti-differentiate expressions
- use of the trigonometric identities $\sin ^{2}(a x)=\frac{1}{2}\left(1-\cos (2 a x)\right.$ and $\cos ^{2}(a x)=$ $\frac{1}{2}(1+\cos (2 a x)$ in anti-differentiation techniques
- anti-differentiation using partial fractions of rational functions
- integration by parts

Numerical and symbolic integration using technology

Application of integration, areas of regions bounded by curves, arc lengths for parametrically determined curves, surface area of solids of revolution, volumes of solids of revolution of a region about either coordinate axis.

Formulation of differential equations from contexts in, for example, chemistry, biology and economics, in situations where rates are involved (including some differential equations whose analytic solutions are not required, but can be solved numerically using technology)

The logistic differential equation

Verification of solutions of differential equations and their representation using direction (slope) fields

Solution of simple differential equations of the form $\frac{d y}{d x}=f(x), \frac{d y}{d x}=g(y)$ and in general differential equations of the form $\frac{d y}{d x}=f(x) g(y)$ using separation of variables and differential equations of the form $\frac{d^{2} y}{d x^{2}}=f(x)$

Numerical solution by Euler's method (first order approximation)
Use of velocity-time graphs to describe and analyse rectilinear motion
Application of differentiation, anti-differentiation and solution of differential equations to rectilinear motion of a single particle, including the different derivative forms for acceleration $a=\frac{d^{2} x}{d t^{2}}=\frac{d v}{d t}=v \frac{d v}{d x}=\frac{d}{d x}\left(\frac{1}{2} v^{2}\right)$

Topic: Space and measurement

Do I have it in my notes?
Note-making deadline
Memorising deadline

Addition and subtraction of vectors and their multiplication by a scalar, position vectors

Linear dependence and independence of a set of vectors and geometric interpretation

Magnitude of a vector, unit vector, the orthogonal unit vectors $\mathbf{i}_{\mathbf{2}}^{\mathbf{j}}$ and $\underline{\mathbf{k}}$

Resolution of a vector into rectangular components

Scalar (dot) product of two vectors, deduction of dot product for the $\mathbf{i}_{\mathbf{2}}^{\mathbf{j}} \mathbf{a n d} \underline{\mathbf{k}}$ vector system and its use to find scalar resolute and vector resolute

Vector (cross) product of two vectors in three dimensions, including the determinant form			
Vector proofs of simple geometric results, such as 'the diagonals of a rhombus are perpendicular', 'the medians of a triangle are concurrent' and 'the angle subtended by a diameter in a circle is a right angle'			
Parallel and perpendicular vectors			
Vector equations and parametric equations of curves in two or three dimensions involving a parameter (and the corresponding Cartesian equation in the two-dimensional case)			
Vector equation of a straight line, given the position of two points, or equivalent information, in both two and three dimensions			
Vector cross product, normal to a plane and vector, parametric and Cartesian equations of a plane			
Position vector as a function of time and sketching the corresponding path given the function, including circles, ellipses and hyperbolas in Cartesian or parametric forms			
The positions of two particles each described as a vector function of time, and whether their paths cross or if the particles meet			
Differentiation and anti-differentiation of a vector function with respect to time and applying vector calculus to motion in a plane and in three dimensions			
Topic: Data Analysis, Probability and Statistics	Do I have it in my notes?	Note-making deadline	Memorising deadline
For n independent identically distributed random variables $X_{1}, X_{2} \ldots X_{n}$ each with mean μ and variance σ^{2} : - $\mathrm{E}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=n \mu$ - $\operatorname{Var}\left(X_{1}+X_{2}+\cdots+X_{n}\right)=n \sigma^{2}$			
For n independent random variables $X_{1}, X_{2} \ldots X_{n}$ and real numbers $a_{1}, a_{2} \ldots a_{n}$: - $\mathrm{E}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)=a_{1} \mathrm{E}\left(X_{1}\right)+a_{2} \mathrm{E}\left(X_{2}\right)+\cdots+a_{n} \mathrm{E}\left(X_{n}\right)$ - $\operatorname{Var}\left(a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}\right)=a_{1}{ }^{2} \operatorname{Var}\left(X_{1}\right)+a_{2}{ }^{2} \operatorname{Var}\left(X_{2}\right)+\cdots+a_{n}{ }^{2} \operatorname{Var}\left(X_{n}\right)$			
For n normally distributed independent random variables $X_{1}, X_{2} \ldots X_{n}$ and real numbers $a_{1}, a_{2} \ldots a_{n}$ the random variable $a_{1} X_{1}+a_{2} X_{2}+\cdots+a_{n} X_{n}$ is also normally distributed			

The concept of the sample mean \bar{X} as a random variable whose value varies between samples where X is a random variable with mean μ and the standard deviation σ

Simulation of repeated random sampling, from a variety of distributions and a range of sample sizes, to illustrate properties of the distribution of \bar{X} across samples of a fixed size n including its mean μ its standard deviation $\frac{\sigma}{\sqrt{n}}$ (where μ and σ are the mean and standard deviation of X respectively) and its approximate normality if n is large

Determination of confidence intervals for means and the use of simulation to illustrate variations in confidence intervals between samples and to show that the likelihood of a confidence interval containing μ depends on the level of confidence chosen in the determination of the interval

Construction of an approximate confidence interval, $\left(\bar{x}-z \frac{\sigma}{\sqrt{n}}, \bar{x}+z \frac{\sigma}{\sqrt{n}}\right)$ where σ is the population standard deviation and z is the appropriate quantile for the standard normal distribution or construction of an approximate confidence interval $\left(\bar{x}-z \frac{s}{\sqrt{n}}, \bar{x}+z \frac{s}{\sqrt{n}}\right)$ where s is the sample standard deviation and z is the appropriate quantile for the standard normal distribution, and n is large ($n \geq 30$ in many practical contexts)

Concepts of null hypothesis, H_{0}, and alternative hypotheses, H_{1}, test statistic
Level of significance and p-value
Formulation of hypotheses and making a decision concerning a population mean based on:

- a random sample from a normal population of known variance
- a large random sample from any population

1-tail and 2-tail tests

Interpretation of the results of a hypothesis test in the context of the problem

Hypothesis test, relating the formulation, conduct, errors and results in terms of conditional probability

Practice Schedule

PRACTICE EXAM	DEADLINE
Practice Exam 1	
Practice Exam 2	
Practice Exam 3	
Practice Exam 4	
Practice Exam 5	
EXAM DATE:	

Congratulations!

You're ready! Now relax

 and think about how good it will feel leaving the exam room knowing the hard work has paid off. Congratulations and good luck (not that you need it)!CONNECT
EDUCATION
An Elevate Education ${ }^{\downarrow}$ Brand
www.connecteducation.education
hello@connecteducation.com.au
1300667945

